
sevivi Documentation
Release 0.1.0

Arne Herdick

Oct 22, 2021

CONTENTS

1 Features 3

2 Installation 5

3 Usage 7

4 Template Credits 9

5 Installation 11
5.1 Stable release . 11
5.2 From sources . 11

6 Usage 13
6.1 Installation . 13
6.2 Command-Line Usage . 13
6.3 Usage as a library . 16

7 Background 19
7.1 Concept . 19
7.2 Concept Examples . 21

8 Reference 23
8.1 sevivi.main . 23

9 Contributing 25
9.1 Types of Contributions . 25
9.2 Get Started! . 26
9.3 Pull Request Guidelines . 27
9.4 Tips . 27
9.5 Deploying . 27

10 Credits 29
10.1 Contributors . 29

11 History 31
11.1 X.Y.Z (YYYY-MM-DD) . 31

12 sevivi readme 33
12.1 Features . 33
12.2 Installation . 33
12.3 Usage . 33
12.4 Template Credits . 34

i

ii

sevivi Documentation, Release 0.1.0

sevivi is a python package and command line tool to generate videos of sensor data graphs synchronized to a video of
the sensor movement.

• Free software: MIT license

• Documentation: https://sevivi.readthedocs.io.

CONTENTS 1

https://pypi.python.org/pypi/sevivi
https://github.com/hpi-dhc/sevivi/actions/workflows/deploy.yml?query=branch%main
https://github.com/hpi-dhc/sevivi/actions/workflows/all.yml?query=branch%3Amain
https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/enra64/f731de158a21515e2d6c52ed48d406ad/raw/sevivi_coverage_main.json
https://sevivi.readthedocs.io/en/latest/?badge=latest
https://pyup.io/repos/github/hpi-dhc/sevivi/
https://github.com/hpi-dhc/sevivi/blob/master/CODE_OF_CONDUCT.md
https://sevivi.readthedocs.io

sevivi Documentation, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

FEATURES

• TODO

3

sevivi Documentation, Release 0.1.0

4 Chapter 1. Features

CHAPTER

TWO

INSTALLATION

Install the package from pypi:

pip install sevivi

5

sevivi Documentation, Release 0.1.0

6 Chapter 2. Installation

CHAPTER

THREE

USAGE

Check out the usage documentation, please! If you just want to render a video to get started, keep reading. After you
have downloaded the repository, you can use our test data. Run the following:

git clone git@github.com:your_name_here/sevivi.git
cd sevivi/
pip install sevivi
sevivi test-files/test-data-configs/kinect_sync_squatting.toml

If you want to use sevivi as a library, you can copy-paste the following code into your project. You should download
our test files for this to run immediately.

import pandas as pd

from sevivi.config import RenderConfig, ManuallySynchronizedSensorConfig
from sevivi.image_provider import GraphImageProvider, VideoImuCaptureAppImageProvider
from sevivi.video_renderer import VideoRenderer

video_provider = VideoImuCaptureAppImageProvider(
video_path="test_files/videos/imu_sync.mp4",
imu_pb_path="test_files/sensors/video_imu_capture_app/video_meta.pb3"

)

create a GraphImageProvider for each of your sensors
sensor_config = ManuallySynchronizedSensorConfig()
sensor_config.offset_seconds = 0.0
sensor_config.name = "Human-Readable Name"
sensor_config.path = "test_files/sensors/imu_synchronization/camera_imu.csv.gz"
data = pd.read_csv(sensor_config.path, index_col=0, parse_dates=True)
graph_image_provider = GraphImageProvider(data, sensor_config)

render the video
renderer = VideoRenderer(RenderConfig(), video_provider, [graph_image_provider])
renderer.render_video()

7

sevivi Documentation, Release 0.1.0

8 Chapter 3. Usage

CHAPTER

FOUR

TEMPLATE CREDITS

This package was created with Cookiecutter and the pyOpenSci/cookiecutter-pyopensci project template, based off
audreyr/cookiecutter-pypackage.

9

https://github.com/audreyr/cookiecutter
https://github.com/pyOpenSci/cookiecutter-pyopensci
https://github.com/audreyr/cookiecutter-pypackage

sevivi Documentation, Release 0.1.0

10 Chapter 4. Template Credits

CHAPTER

FIVE

INSTALLATION

5.1 Stable release

To install sevivi, run this command in your terminal:

$ pip install sevivi

This is the preferred method to install sevivi, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

5.2 From sources

The sources for sevivi can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/hpi-dhc/sevivi

Or download the tarball:

$ curl -OL https://github.com/hpi-dhc/sevivi/tarball/master

Once you have a copy of the source, you can install it with poetry:

$ poetry install

11

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/hpi-dhc/sevivi
https://github.com/hpi-dhc/sevivi/tarball/master
https://python-poetry.org/docs/#installation

sevivi Documentation, Release 0.1.0

12 Chapter 5. Installation

CHAPTER

SIX

USAGE

Sevivi (SEnsor VIdeo VIsualizer) has two modes of operation. It can either work as a command-line tool, if you use
supported input data, or you can use sevivi as a library, instantiating the input data manually and improving the results
by supplementing, for example, the algorithm used to synchronize the sensors to the video.

6.1 Installation

Simply run

pip install sevivi

to install sevivi.

6.2 Command-Line Usage

Installing sevivi makes the seviviCLI available as a python program. sevivi has the following command line syntax:

usage: sevivi [-h] [--output TARGET_FILE_PATH] config [config ...]

positional arguments:
config Configuration files. Later files overwrite earlier ones. Only␣

→˓the last video section is used. All given sensor configs are interpreted as a list,␣
→˓rather

than overwriting earlier configuration.

optional arguments:
-h, --help show this help message and exit
--output TARGET_FILE_PATH

Set the output file. Overwrites config value.

As described above, sevivi supports multiple config files. Each later config file overwrites the configuration from
previous configuration files. There is one exception for this: the configuration for sensor data sources. Every sensor
data source is appended to the list of all sources instead.

If you have downloaded the repository, you can use our test data to get used to working with sevivi. Run the following:

git clone git@github.com:your_name_here/sevivi.git
cd sevivi/

(continues on next page)

13

sevivi Documentation, Release 0.1.0

(continued from previous page)

pip install sevivi
sevivi test-files/test-data-configs/kinect_sync_squatting.toml

Configuration files are comprised of general options that apply to the entire tool, a video configuration section, and a
number of sensor source configuration sections.

6.2.1 Complete Example

More options and descriptions for each section can be found below. This is a single example for a full configuration
file that can render one of the examples included in the repository.

target_file_path = "camera_sevivi.avi"

[[video]]
type = "kinect"
path = "test_files/videos/joint_synchronization_walking.mp4"
skeleton_path_3d = "test_files/skeletons/joint_synchronization_walking/positions_3d.csv.
→˓gz"

[[sensor]]
type = "joint-synced"
sensor_sync_column_selection = ["Acc_X", "Acc_Y", "Acc_Z"]
camera_joint_sync_column_selection = ["SPINE_CHEST (x)", "SPINE_CHEST (y)", "SPINE_CHEST␣
→˓(z)"]
path = "test_files/sensors/joint_synchronization_walking/LF.csv.gz"

[[sensor]]
type = "joint-synced"
sensor_sync_column_selection = ["Acc_X", "Acc_Y", "Acc_Z"]
camera_joint_sync_column_selection = ["SPINE_CHEST (x)", "SPINE_CHEST (y)", "SPINE_CHEST␣
→˓(z)"]
path = "test_files/sensors/joint_synchronization_walking/RF.csv.gz"

6.2.2 Common Options

These options are common to the whole tool, and can always be set. They must be in the root section, as shown in the
complete example.

May be 'vertical' to put all sensor graphs below the video, or 'horizontal' to put the␣
→˓sensor graphs left and right of
the center of the video
stacking_direction = "horizontal"
currently, the only supported plotting method is moving_vertical_line
plotting_method = "moving_vertical_line"
Set the four character codec name to save in the avi container
fourcc_codec = "MJPG"
Set the target video file path
target_file_path = "./sevivi.mp4"

14 Chapter 6. Usage

sevivi Documentation, Release 0.1.0

6.2.3 Video Options

We support different video input formats, each specified by its unique type. You can either add your video as a separate
config file to the CLI call (makes it easy to switch out) or add the section into one main config file.

• Example video section for videos without associated synchronization data:

[[video]]
source video file
path = "test_files/raw.mkv"
type is "raw" as this video doesn't have any data associated with it
type = "raw"

• Example video section for videos from an Azure Kinect with exported skeleton data:

[[video]]
path to the input video
path = "test_files/kinect.mkv"
skeleton data. skeleton data can be created by @justamad
skeleton_path_3d = "test_files/kinect.csv.gz"
azure kinect config type
type = "kinect"

• Example video section for videos created with VideoImuCapture:

[[video]]
path to the input video
path = "test_files/videos/imu_sync.mp4"
specify the path to the IMU data; this is a protobuf file from the VideoImuCapture app
imu_path = "test_files/sensors/video_imu_capture_app/video_meta.pb3"
config type to specify this is from the VideoImuCapture app
type = "videoImuApp"

• Example video section for videos that have IMU data associated in some other way:

[[video]]
video file path
path = "test_files/videos/imu_sync.mp4"
specify this is a video with IMU data attached
type = "imu"
specify the path to the IMU data
imu_path = "test_files/kinect_imu.csv.gz"

6.2.4 Sensor Options

Last but not least, the input sensors need to be specified. Each sensor can be added by adding another [[sensor]]
block. Some options are common to all sensors:

[[sensor]]
Only data after this time (measured in unshifted sensor time) is included
start_time = "00:00:00.000000"
Only data before this time (measured in unshifted sensor time) is included
end_time = "00:00:01.000000"

6.2. Command-Line Usage 15

https://github.com/DavidGillsjo/VideoIMUCapture-Android/

sevivi Documentation, Release 0.1.0

Again, a number of types with specific options are available:

• Manual Synchronization – this can be useful to, e.g., synchronize a sensor that doesn’t include the right modality
to be synchronized against the camera

[[sensor]]
how many seconds into the future the data from this sensor should be move to align its␣
→˓start with the video start.
this value can be negative.
offset_seconds = 123.4
A manually synchronized sensor
type = "manually-synced"
path to the data of this sensor
path = "test_files/manual_imu.csv.gz"

• Camera IMU synchronization: This sensor configuration can be used to synchronize sensors by their data to
camera data

[[sensor]]
This is a sensor synchronized to the IMU of the camera.
type = "camera-imu-synced"
Select the columns **from the sensor** that should be aligned to the columns **from␣
→˓the camera**
sensor_sync_column_selection = ["AccX", "Accel Y"]
Select the columns **from the camera** that should be aligned to the columns **from␣
→˓the sensor**
camera_imu_sync_column_selection = ["AccX", "Accel Y"]
Specify the path to the data
path = "test_files/sensor_imu.csv.gz"

6.3 Usage as a library

To use sevivi as a library, which is useful to change implementations, add some, or just because you don’t feel like
writing configuration files, keep in mind that the main interface to sevivi is the VideoRenderer class. Once you have
created a VideoRenderer instance, you can call the render_video method to start writing the result.

To create the instance, you need to provide a VideoImageProvider subclass and a GraphImageProvider for each
sensor you want to add to the video.

The following VideoImageProvider subclasses are available out of the box:

• AzureProvider

• PlainVideoImageProvider

• ImuCameraImageProvider

• VideoImuCaptureAppImageProvider

As an example, to manually create a VideoRenderer that renders one of the examples provided in the repository, the
following code can be used:

import pandas as pd

from sevivi.config import RenderConfig, ManuallySynchronizedSensorConfig
from sevivi.image_provider import GraphImageProvider, VideoImuCaptureAppImageProvider

(continues on next page)

16 Chapter 6. Usage

sevivi Documentation, Release 0.1.0

(continued from previous page)

from sevivi.video_renderer import VideoRenderer

video_provider = VideoImuCaptureAppImageProvider(
video_path="test_files/videos/imu_sync.mp4",
imu_pb_path="test_files/sensors/video_imu_capture_app/video_meta.pb3"

)

create a GraphImageProvider for each of your sensors
sensor_config = ManuallySynchronizedSensorConfig()
sensor_config.offset_seconds = 0.0
sensor_config.name = "Human-Readable Name"
sensor_config.path = "test_files/sensors/imu_synchronization/camera_imu.csv.gz"
data = pd.read_csv(sensor_config.path, index_col=0, parse_dates=True)
graph_image_provider = GraphImageProvider(data, sensor_config)

render the video
renderer = VideoRenderer(RenderConfig(), video_provider, [graph_image_provider])
renderer.render_video()

6.3. Usage as a library 17

sevivi Documentation, Release 0.1.0

18 Chapter 6. Usage

CHAPTER

SEVEN

BACKGROUND

This tool has been born out of research regarding human motion analysis with acceleration- and gyroscope sensors.
During our trials, we had kinect cameras running to gather movement skeletons from participants. When analyzing
trials, we often found the need to see how specific movements influenced the values from the acceleration and gyroscope
sensors. However, we were unable to find a tool capable of showing the sensor data stream at the same time as the video
from the kinect cameras.

A first prototype showed great promise in the usefulness of such a tool, allowing us to easily create repetition detection
algorithms for our squat exercise trials.

As we could not find a tool like ours before, we decided to polish our research about it and create an open-source
version!

7.1 Concept

Sevivi (SEnsor VIdeo VIsualizer) always uses exactly one video source. Around the video, the data from any number
of sensors can be shown. An exemplary result can be seen below. Data from multiple axes of the same sensor (e.g., the
3 accelerometer axes of the ankle sensor) is grouped into the same graph.

19

sevivi Documentation, Release 0.1.0

docs/images/sevivi-screenshot.jpg

To achieve the goal of having the sensor data playback be synchronous to the video playback, some method of syn-
chronization is required. Sevivi solves this problem by requiring data that is recorded on the same clock as the camera
frames. For a Kinect, this might be the tracked skeleton, for a smartphone, it could be the integrated IMU.

As we can now assume we have data synchronous to the video, our synchronization problem suddenly becomes much
simpler. We only need to align each sensor to the data from the video source, and voilà, we can simply render a graph
of the data.

Let’s take this very abstract information and translate it to understandable examples in the next section.

20 Chapter 7. Background

sevivi Documentation, Release 0.1.0

7.2 Concept Examples

While in theory sevivi could be use to combine any type of sensors, the most common use case is to use acceleration
sensors. This is because many acceleration can be derived from skeleton tracking, and many wearable sensors include
an acceleration sensor, leading to the necessary combination of two acceleration streams being available.

7.2.1 Kinect + IMU Sensors

Kinect cameras record an RGB image and a depth image. With both of these data streams, it is possible to achieve very
good human skeleton tracking. The result of this tracking is a stream of positions for each of the 24 joints the kinect
tracks. Now, let’s assume we have collected data from an IMU on the wrist, and want to show its values during specific
movements.

Our goal is to align the acceleration recorded by the wrist’s IMU sensor with the wrist joint from the kinect. As the
kinect records positions, we need to calculate the second derivation of this data to arrive at acceleration as well. Now,
we can simply find the peak in the cross-correlation between the two data streams, and we know how much we need to
shift the data from the sensor in time to align it with the acceleration data from the kinect.

7.2.2 Smartphone IMU + IMU Sensors

As you probably know, every modern smartphone has an IMU. There exist various apps that allow recording the IMU
together with a video from the camera. Sevivi specifically has support for the VideoIMUCapture app. By shaking the
camera together with the IMU sensors, distinctive spikes are recorded in the acceleration data. These spikes can be
used to align the camera IMU with the IMU sensors. After shaking, the IMU sensors can be attached to whatever is to
be tracked. Again, we have the two acceleration streams to synchronize on.

7.2.3 Manual Synchronization

Sevivi also allows to manually set the offset between camera and your sensor data. This is useful in case your desired
sensor or camera has no data stream to synchronize on.

7.2. Concept Examples 21

https://github.com/DavidGillsjo/VideoIMUCapture-Android/

sevivi Documentation, Release 0.1.0

22 Chapter 7. Background

CHAPTER

EIGHT

REFERENCE

8.1 sevivi.main

23

sevivi Documentation, Release 0.1.0

24 Chapter 8. Reference

CHAPTER

NINE

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

9.1 Types of Contributions

9.1.1 Report Bugs

Report bugs at https://github.com/hpi-dhc/sevivi/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

9.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

9.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

9.1.4 Write Documentation

sevivi could always use more documentation, whether as part of the official sevivi docs, in docstrings, or even on the
web in blog posts, articles, and such.

25

https://github.com/hpi-dhc/sevivi/issues

sevivi Documentation, Release 0.1.0

9.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/hpi-dhc/sevivi/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

9.2 Get Started!

Ready to contribute? Here’s how to set up sevivi for local development.

1. Fork the sevivi repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/sevivi.git

3. Install all dependencies after installing poetry <https://python-poetry.org/docs/>:

$ cd sevivi/
$ poetry install
$ pre-commit install

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass the tests and linters and that the docs can be
built:

$ py.test
$ pre-commit run --all-files
$ cd docs && make html

7. Commit your changes and then push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

8. Submit a pull request through the GitHub website.

26 Chapter 9. Contributing

https://github.com/hpi-dhc/sevivi/issues

sevivi Documentation, Release 0.1.0

9.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.7, 3.8 and 3.9, and for PyPi. This will be verified within the PR.

9.4 Tips

To run a subset of tests:

$ py.test tests.test_sevivi

9.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed, including an entry in
HISTORY.rst and an update of the old version code in docs/conf.py and pyproject.toml.

GitHub will then deploy to PyPI if tests pass.

9.3. Pull Request Guidelines 27

sevivi Documentation, Release 0.1.0

28 Chapter 9. Contributing

CHAPTER

TEN

CREDITS

10.1 Contributors

• Justin Albert <justin.albert@hpi.de>

• Arne Herdick <arne.herdick@hpi.de>

29

mailto:justin.albert@hpi.de
mailto:arne.herdick@hpi.de

sevivi Documentation, Release 0.1.0

30 Chapter 10. Credits

CHAPTER

ELEVEN

HISTORY

11.1 X.Y.Z (YYYY-MM-DD)

• TODO

31

sevivi Documentation, Release 0.1.0

32 Chapter 11. History

CHAPTER

TWELVE

SEVIVI README

sevivi is a python package and command line tool to generate videos of sensor data graphs synchronized to a video of
the sensor movement.

• Free software: MIT license

• Documentation: https://sevivi.readthedocs.io.

12.1 Features

• TODO

12.2 Installation

Install the package from pypi:

pip install sevivi

12.3 Usage

Check out the usage documentation, please! If you just want to render a video to get started, keep reading. After you
have downloaded the repository, you can use our test data. Run the following:

git clone git@github.com:your_name_here/sevivi.git
cd sevivi/
pip install sevivi
sevivi test-files/test-data-configs/kinect_sync_squatting.toml

33

https://pypi.python.org/pypi/sevivi
https://github.com/hpi-dhc/sevivi/actions/workflows/deploy.yml?query=branch%main
https://github.com/hpi-dhc/sevivi/actions/workflows/all.yml?query=branch%3Amain
https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/enra64/f731de158a21515e2d6c52ed48d406ad/raw/sevivi_coverage_main.json
https://sevivi.readthedocs.io/en/latest/?badge=latest
https://pyup.io/repos/github/hpi-dhc/sevivi/
https://github.com/hpi-dhc/sevivi/blob/master/CODE_OF_CONDUCT.md
https://sevivi.readthedocs.io

sevivi Documentation, Release 0.1.0

If you want to use sevivi as a library, you can copy-paste the following code into your project. You should download
our test files for this to run immediately.

import pandas as pd

from sevivi.config import RenderConfig, ManuallySynchronizedSensorConfig
from sevivi.image_provider import GraphImageProvider, VideoImuCaptureAppImageProvider
from sevivi.video_renderer import VideoRenderer

video_provider = VideoImuCaptureAppImageProvider(
video_path="test_files/videos/imu_sync.mp4",
imu_pb_path="test_files/sensors/video_imu_capture_app/video_meta.pb3"

)

create a GraphImageProvider for each of your sensors
sensor_config = ManuallySynchronizedSensorConfig()
sensor_config.offset_seconds = 0.0
sensor_config.name = "Human-Readable Name"
sensor_config.path = "test_files/sensors/imu_synchronization/camera_imu.csv.gz"
data = pd.read_csv(sensor_config.path, index_col=0, parse_dates=True)
graph_image_provider = GraphImageProvider(data, sensor_config)

render the video
renderer = VideoRenderer(RenderConfig(), video_provider, [graph_image_provider])
renderer.render_video()

12.4 Template Credits

This package was created with Cookiecutter and the pyOpenSci/cookiecutter-pyopensci project template, based off
audreyr/cookiecutter-pypackage.

34 Chapter 12. sevivi readme

https://github.com/audreyr/cookiecutter
https://github.com/pyOpenSci/cookiecutter-pyopensci
https://github.com/audreyr/cookiecutter-pypackage

	Features
	Installation
	Usage
	Template Credits
	Installation
	Stable release
	From sources

	Usage
	Installation
	Command-Line Usage
	Complete Example
	Common Options
	Video Options
	Sensor Options

	Usage as a library

	Background
	Concept
	Concept Examples
	Kinect + IMU Sensors
	Smartphone IMU + IMU Sensors
	Manual Synchronization

	Reference
	sevivi.main

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Contributors

	History
	X.Y.Z (YYYY-MM-DD)

	sevivi readme
	Features
	Installation
	Usage
	Template Credits

